Artificial leaf jumps developmental hurdle

February 17, 2014

​In a recent early online edition of Nature Chemistry, ASU scientists, along with colleagues at Argonne National Laboratory, have reported advances toward perfecting a functional artificial leaf.

Designing an artificial leaf that uses solar energy to convert water cheaply and efficiently into hydrogen and oxygen is one of the goals of BISfuel – the Energy Frontier Research Center, funded by the Department of Energy, in the Department of Chemistry and Biochemistry at Arizona State University. Bio-inpired solar fuel production Download Full Image

Hydrogen is an important fuel in itself and serves as an indispensible reagent for the production of light hydrocarbon fuels from heavy petroleum feed stocks. Society requires a renewable source of fuel that is widely distributed, abundant, inexpensive and environmentally clean.

Society needs cheap hydrogen.

“Initially, our artificial leaf did not work very well, and our diagnostic studies on why indicated that a step where a fast chemical reaction had to interact with a slow chemical reaction was not efficient,” said ASU chemistry professor Thomas Moore. “The fast one is the step where light energy is converted to chemical energy, and the slow one is the step where the chemical energy is used to convert water into its elements viz. hydrogen and oxygen.”

The researchers took a closer look at how nature had overcome a related problem in the part of the photosynthetic process where water is oxidized to yield oxygen.

“We looked in detail and found that nature had used an intermediate step,” said Moore. “This intermediate step involved a relay for electrons in which one half of the relay interacted with the fast step in an optimal way to satisfy it, and the other half of the relay then had time to do the slow step of water oxidation in an efficient way.”

They then designed an artificial relay based on the natural one and were rewarded with a major improvement.

Seeking to understand what they had achieved, the team then looked in detail at the atomic level to figure out how this might work. They used X-ray crystallography and optical and magnetic resonance spectroscopy techniques to determine the local electromagnetic environment of the electrons and protons participating in the relay, and with the help of theory (proton coupled electron transfer mechanism), identified a unique structural feature of the relay. This was an unusually short bond between a hydrogen atom and a nitrogen atom that facilitates the correct working of the relay.

They also found subtle magnetic features of the electronic structure of the artificial relay that mirrored those found in the natural system.

Not only has the artificial system been improved, but the team understands better how the natural system works. This will be important as scientists develop the artificial leaf approach to sustainably harnessing the solar energy needed to provide the food, fuel and fiber that human needs are increasingly demanding.

ASU chemistry professors involved in this specific project include Thomas Moore, Devens Gust, Ana Moore and Vladimiro Mujica. The department is a unit of the College of Liberal Arts and Sciences. Key collaborators in this work are Oleg Poluektov and Tijana Rajh from Argonne National Laboratory.

This work would not have been possible without the participation of many scientists driven by a common goal and coordinated by a program such as the Energy Frontier Research Center to bring the right combination of high-level skills to the research table.

The Department of Chemisry and Biocehmistry is an academic unit in ASU's College of Liberal Arts and Sciences.

Jenny Green

Clinical associate professor, School of Molecular Sciences


Why we love some animals and hate others

February 17, 2014

Looking at historical biological and cultural studies, author Jon Mooallem aims to better understand why and how people sympathize with some animals rather than others. This will be the subject of his upcoming lecture, titled "Billy and Teddy: Fear, Disinterest and Compassion for Wildlife."

The Feb. 20 lecture is part of the Humanities for the Environment project funded by the Institute for Humanities Research Andrew W. Mellon Foundation/Consortium of Humanities Centers and Institutes. Cartoon depicting teddy bear and possum, Presidents T. Roosevelt and W. Taft Download Full Image

The title of his talk points to an incident that took place on a hunting expedition in 1902 when President Theodore Roosevelt refused to kill a black bear that had been cornered and harnessed by some of his attendants, deeming such an action incredibly unsportsmanlike.

This event was widely publicized and inspired a new toy, “Teddy’s bear.” In response to the popular toy, president-elect William Howard Taft promoted a new toy named “Billy Possum.” As those who have seen a possum could have predicted, this toy flopped; luckily for Taft, it was introduced after the ballot count.

The real interest in this phenomenon lies not in how Taft could have committed such a blunder when choosing an animal to represent him, but rather in how Americans perceive different animals, why they perceive them this way, the effects such perceptions can have on the environment and how these public opinions about animals can be manipulated toward certain ends.

Mooallem has spent years exploring this topic, and has contributed to This American Life, Harper’s, Wired, The New Yorker, Radiolab and many other magazines and radio shows, which are frequently used as mediums for exploring this intriguing, and at times confusing, relationship between humans and animals.

In addition to recently publishing the critically acclaimed "Wild Ones," he has also been a contributing writer of the New York Times Magazine since 2006 and writer-at-large for Pop-Up Magazine.

Mooallem’s lecture, which is co-sponsored by the School of Life Sciences in the College of Liberal Arts and Sciences, is part of the international Humanities for the Environment (HfE) project concerned with various aspects of environmental humanities, and will be animated by questions about the role of the humanities in the Anthropocene.

Mooallem, along with University of Utah professor of biology Nalini Nadkarni, will be participating in the second of three workshops during their visit to ASU this week, titled "Imagining Communities in the Anthropocene: Multi-species Relationships."

The lecture is scheduled for 5 p.m., in Marston Exploration Theater, in the ISTB4 building. Book signing and refreshments will take place at 4 p.m.

To RSVP, visit the Institute for Humanities Research website.