Skip to main content

Tiny pumping stations play outsize role in cellular health and disease


Abhishek Singharoy is a researcher in the Biodesign Center for Applied Structural Discovery and ASU’s School of Molecular Sciences.

|
October 12, 2020

In order to carry out their astonishingly varied tasks, living cells make use of a range of micromachines. One of the most crucial of these — known vacuolar ATPase or V-ATPase — is responsible for ferrying protons into cellular compartments or organelles. Without it, cells could not survive.

Once set in motion, this natural motor — ensconced in the cell organelle’s fatty outer membrane — spins like a helicopter blade at 100 times per second, sweeping in protons from outside the cell’s organelle. 

Scientists have long known of the indispensable role of V-ATPase. But understanding the workings of this intricate minifactory have been challenging to tease out, until now.

In new research appearing in the journal Science AdvancesAbhishek Singharoy and his colleagues combine high-resolution cryo-EM images made at the Department of Energy’s SLAC National Accelerator Laboratory with supercomputer simulations, in order to peer into the intricacies of this proton pump for the first time.

Singharoy is a researcher in Arizona State University's Biodesign Center for Applied Structural Discovery and ASU’s School of Molecular Sciences. His work helped fellow researchers visualize the complexities of V-ATPase through supercomputer simulations conducted at the Oak Ridge National Laboratory.

“Molecular motors exemplify some of the most intricate chemo-mechanical devices, and our team in SMS and CASD has developed highly sophisticated computational tools to address the energy source and sinks of the motor’s ratcheting motion," he said. "In 2017, we started working on the soluble part of the V-type motor, namely V1 ATPase. Now that we have a good control on the transmembrane Vo motor, it’s a great step forward towards simulating the entire motor in collaboration with Soung-Hun Roh, Stephan Wilkens and Wah Chiu.”

The current findings will have implications for intelligent drug design as well as furthering our understanding of how cells combat viruses and other pathogens.

Read the full story

More Science and technology

 

Tracee Jamison-Hooks stands in front of an ASU-branded sign smiling

Associate professor shares her journey from NASA to ASU

From leading space missions to designing and building spaceflight hardware and training students in space science and engineering…

May 01, 2024
A crowd observes G. Don Taylor speak in a classroom

Famed systems engineer inspires ASU to tackle global problems

“Providing great talent with great opportunity can make a great difference.” Such was a key part of the message delivered by G.…

May 01, 2024
Stock photo of woman with head in hands and stress drawings displayed around her

The science behind chronic stress

Stress comes in many shapes and sizes. There’s the everyday stress of preparing for a final exam or being stuck in traffic. And…

April 26, 2024