image title

ASU, Mexico partnership takes on biotechnology challenges

June 6, 2017

University experts to tackle issues surrounding infectious diseases, gene editing at international symposium

Never in the history of human existence has the opportunity to genetically modify or protect life been as great and accessible to anyone interested in the topic as it is today. 

Cures for human hereditary diseases. Designer babies. Glow-in-the-dark fish. Bioterrorism. Mosquitoes programmed to perish. The opportunities and risks are here now, but lagging are policies, ethical considerations and safety precautions needed to proceed prudently on an international scale.

Arizona State University experts will delve into the issues presented by biotechnology during the annual International Biosafety and Biosecurity Symposium (SIBB) held this year in Morelia, Mexico, and organized by the Asociación Mexicana de Bioseguridad (AMEXBIO), June 7–10.

“We’re enhancing biosafety and biosecurity across international borders,” said Irene Mendoza, associate biosafety officer with ASU’s Office of Environmental Health and Safety, who will be one of the featured speakers at the symposium. “Anything that affects Mexico, like the release of a pathogenic agent, can travel north and affect us.”

Although infectious diseases will be addressed at the symposium, the ASU delegation will lead a technical discussion on gene editing and gene drive technologies, said David Gillum, ASU Environmental Health and Safety associate director and institutional biosafety officer. In simplest terms, it’s about the ability to modify plants or mammals by manipulating their genome — i.e., the chromosomes in each cell of an organism.

“These technologies can drive a change in an entire species from just one modification,” Gillum said. “It can be propagated in all future generations.”

Q&A: ASU professor continues to make waves in biosafety field
David Gillum, ASU Environmental Health and Safety associate director and institutional biosafety officer, said that with the increased use of CRISPR Cas9 gene editing technology in Mexico comes great opportunities for ASU to form a more strategic partnership with AMEXBIO by conducting training sessions, lab site visits, joint research and other symposia. Photo by Charlie Leight/ASU Now

 The gene drive of mosquitoes, for example, can be modified so the specific types that carry malaria and Zika will not reproduce and eventually die off. But once their genome is changed and released into the environment, there is no easy way to predict any unintended consequences. 

“That’s what is scary about it,” Gillum said. “There’s no easy undo button.”

The leading gene editing method capable of making such changes is called CRISPR Cas9. This technological process takes advantage of the immune systems of bacteria to delete nucleic acids in living cells and replace them with the desired nucleic acid to change the genome.

“When you’re doing this genome editing, you’re looking for very specific nucleic acids to change,” Gillum said. “Let’s consider that you have sickle cell anemia and you have one gene that is wrong, and you just want to target that one gene. But the genome is huge; there are billions of base pairs. So how do you make sure that you target the one that you’re looking for and not similar sequences somewhere else in your body?”

Unlike past costly and complex genome editing technologies, CRISPR Cas9 is simpler, relatively inexpensive and thus more accessible to people who may not be working in a modern laboratory with established biosafety policies and procedures.   

“There are a lot of citizen labs all over the place where science enthusiasts are getting together in their garages and experimenting,” Mendoza said. “The risk is that although they may just be trying to do something fun, what they create may have unintended consequences.”

woman standing behind podium
Irene Mendoza, associate biosafety officer with ASU’s Office of Environmental Health and Safety, will be one of the featured speakers during the annual International Biosafety and Biosecurity Symposium held this week in Morelia, Mexico, and organized by the Asociación Mexicana de Bioseguridad.

 The use of CRISPR Cas9 has increased in Mexico in the past few years, Gillum said. Experts there recognize the challenge, and that drives such events as the SIBB, which includes participation from other Latin American countries.

“What we want to achieve in SIBB is to continue the academic efforts of diffusing specific knowledge on biosafety and biosecurity, as well as raise awareness among those involved in manipulating biological agents,” said Luis Alberto Ochoa Carrera, AMEXBIO president and founder. “The importance of the work of AMEXBIO is based on the need to create a ‘biosafety culture’ and ‘appropriate communication’ within institutions to mitigate risks associated with experimenting with biological agents.”

ASU contacts AMEXBIO remotely throughout the year, but opportunities exist to engage in person and at a higher level by way of training sessions, site visits, joint research and other symposia to address the wide array of biosafety and biosecurity aspects.

“There is a huge opportunity here for ASU and AMEXBIO in Mexico to partner on these projects,“ Gillum said. “They’re very interested in biodefense. We’re looking into philanthropy to help with funding that will allow us to form a more strategic partnership.”

With funding, ASU biosafety experts like Gillum and his team can work with AMEXBIO to visit labs in Mexico to observe operations and offer suggestions on improving safety and security.

“The interesting aspect of biosafety is that in general it’s based on best management practices,” Gillum said. “Except for very highly pathogenic agents and toxins, everything else is done with a best management practices point of view.  There’s not always a black-and-white way to do certain things.”

Forming strategic links between biosafety and biosecurity experts across the border enables mutual collaboration and training in the region, Ochoa Carrera said.

“AMEXBIO recognizes ASU’s efforts and transcendence in Mexico and within the international biosafety community,” Ochoa Carrera said. “The ASU and AMEXBIO alliance enables the dissemination of knowledge in this field, and it’s also an area of opportunity between Mexico and the United States.” 

Top photo: DNA sequence, courtesy freeimages.com.

Jerry Gonzalez

Media Relations Officer , Media Relations and Strategic Communications

 
image title
June 8, 2017

Viewership for rare solar event to eclipse 1918 predecessor; School of Earth and Space Exploration to provide ways to view it

The “Great American Eclipse” is making a return engagement this summer.

On Aug. 21, the sun, moon and Earth will realign for a spectacular total solar eclipse event, one that will cast a shadow of darkness coast-to-coast across the contiguous United States for the first time in almost a century. It’s expected to be the most watched, most photographed and most televised astronomical event of a generation.

And why not? We have the technology.

Researchers and scientists at Arizona State University’s School of Earth and Space Exploration are gearing up for the big event and making sure the public has multiple options to witness what could only be seen by a fortunate few on June 8, 1918 — the last time the path of totality for a solar eclipse occurred over America.

As basis for comparison, consider this passage from the June 8, 1918, edition of the Topeka (Kansas) State Journal, where 90 percent of a normal day’s sunlight plunged into darkness as a result of the eclipse: “Those who will be lucky enough to make the journey to any of the towns over which the shadow of the eclipse will appear will do well to get as near the center of the favored zone as possible. It will not be necessary to take a telescope, but a smoked or dark glass can be used to advantage to watch the progress of the moon in its preliminary phase, the glass should be discarded as soon as the totality arrives.”

“Observations in 1918 were mostly limited to the human eye and photographic plates,” said Patrick Young, an astrophysicist who will be representing ASU in IdahoIdaho is one of the states in the eclipse's path of totality and one of the closest destinations to witness the total solar eclipse for people in Arizona. for the observance of the upcoming total solar eclipse. “There wasn’t even a reliable color photo process at the time, so scientists employed artists to paint the eclipse.”

It did, however, mark what Young describes as the first use of what we might consider a modern scientific instrument in eclipse observations: a photoelectric photometer.

A photoelectric photometer. Photo by John Dickel/National Park Service

Flash-forward 99 years and the recommendations for an immersive eclipse experience quickly reminds us of the journey traveled and advancements made to connect with our Solar System. On Aug. 21, ASU’s School of Earth and Science Exploration will provide access to the eclipse through live-streaming broadcasts; a 3-D theater presentation in the Marston Exploration Theater in Tempe; and outdoor solar telescopes for public use.

Still, even in the midst of limited technology in 1918, the uniqueness and universality of the eclipse was far from lost on observers. As the Topeka State Journal accurately and excitedly pointed out for the times: “Not until 2017 will another total solar eclipse be visible over so large an area of this country, and it is rare that an eclipse track anywhere in the world offers so great a choice of accessible sites for observing the eclipse.”

Young agrees with the awe felt during a total solar eclipse, sharing his own experience in seeing one in Europe in 1999.

“Words can’t do justice to the experience of totality,” he said. “For those in the path, in the instant before the moon covers the sun completely you'll see the diamond ring effect, where the sunlight shines through gaps between mountains on the lunar limb. Everything changes at totality. It will be much darker. Many people can feel a temperature drop. The wispy solar corona will extend several times the sun's size into the surrounding sky. With luck or a small telescope or binoculars you'll be able to see bright pink prominences near the limb.”

The eclipse's list of 'firsts'

What also makes the “Great American Eclipse” an anomaly this year is the fact that the path of totality will occur exclusively within one country — the first such occurrence since America gained its independence in 1776. Other widely reported firsts related to the 2017 eclipse:

  • First total solar eclipse visible from the United States since July 1991, when an eclipse passed through a part of Hawaii.
  • First solar eclipse visible from the contiguous United States since February 1979, when the phenomenon moved across the states of Washington, Oregon, Idaho, Montana and North Dakota.

Path — past and projected

In 1918, the path of the total solar eclipse began in the Borodino Islands south of Japan, crossed the Pacific Ocean and then moved west to east through the United States — from Washington to Florida — before finishing near Bermuda. The largest city to see totality was Denver.

This year, the eclipse is expected to begin in the middle of the North American Pacific Ocean, then travel across at least 14 states, from Oregon through South Carolina. Millions of Americans living within the corridor of the path of totality will experience about two minutes and 40 seconds of darkness. The maximum duration of totality will occur over Illinois, according to Young. Everyone in the continental United States will get at least a partial eclipse this time around.

Map of the path of the total solar eclipse happening in August 2017
The path of totality for this year's solar eclipse is expected to travel across states from Oregon through South Carolina. Image by NASA

 The next total solar eclipse after the 2017 event is not too far off — April 8, 2024. The path for that eclipse will be visible across North America and Central America.

Safety first

In witnessing this rare event, Young urges everyone to take precautions.

“It’s an impressive thing to see with proper eye protection,” he said. “Even part of the sun is dangerously bright, so do not look at it without protection. ... There are special eclipse glasses that are available from various sources. Do a little research and make sure they come from a reputable company. Welding glass works as a filter, and solar filters are available for telescopes.”

ASU eclipse research  

Young and other members of ASU’s School of Earth and Space Exploration will be in Idaho to cover the total eclipse on Aug. 21. While Young assists in coordinating the capture of a virtual-reality experience for those who can’t make it to the path of totality, Associate Research Professional Sheri Klug will be representing ASU at a NASA event. Young says most of the science they will explore will focus on the interface between the sun’s visible surface and its tenuous atmosphere.

“This transfer of energy and the behavior of the sun's magnetic field at its surface are incredibly complex and only partially understood processes, and the eclipse gives us a unique opportunity to make observations of the lower atmosphere of the sun in many wavelengths of light without being overwhelmed.”

Top photo courtesy of NASA/The Exploratorium

Media Relations Officer , Media Relations & Strategic Communications

480-965-9681