image title

Rehab robotics field promises to return control, mobility to aging population

More than 300 rehab robotics researchers, clinicians and others gather at ASU.
Aging population drives interest in rehab robotics for its promise of mobility.
Rehabilitation robotics field covers a range of assistive therapies and devices.
February 7, 2017

Hundreds of researchers, clinicians and industry reps gather at ASU to discuss advancements in growing field

For many seniors and stroke victims, a trip to Disneyland with the little ones is physically out of reach. But Thomas Sugar, an ASU mechanical engineer who specializes in wearable technology, predicts that in the next five years, older people and others with mobility problems will be able to rent robotic exoskeletons that make dream vacations — as well as mundane tasks — a possibility.

“We’re on the cusp of making these technologies available and affordable for the general public,” Sugar said Tuesday. His ASU spin-out company, SpringActive Inc., aims to have a robotic prosthetic ankle in production for the general population within the next year.  

Sugar and more than 300 other rehab robotics researchers, clinicians and industry leaders gathered this week at ASU for the fifth annual Rehabilitation Robotics Conference.

Thomas Sugar
At the fifth annual Rehabilitative Robotics conference, researchers discussed advances in the field. Thomas Sugar (left), an ASU mechanical engineer, predicts that in the next five years the public will have access to wearable robotics. Neville Hogan, meanwhile, predicts widespread clinical acceptance in the near future. Photo by Jessica Hochreiter/ASU

There has been increased interest in the rehab robotics — driven by an aging population dealing with the aftermath of debilitating health problems — based on the promise of restored physical movement and control. Most rehab robotic therapies originated to help military veterans, but the next generation will seek to serve the general public.

The field covers a range of assistive therapies and devices, including exoskeletons that support walking and lifting, treadmill-like robots that help stroke survivors use their arms and legs, and prosthetics that allow users to sense space and dimension.

“The conference provides our junior investigators with an unprecedented opportunity to hear about three decades of research from the people who created the field,” said Marco Santello, a neurophysiologist and director of the School of Biological Health Sciences. “We have collected research on neuroplasticity, locomotion dynamics and a myriad of other body-machine interfaces. The next phase will bring a new generation of rehabilitative technologies.”

Widespread clinical acceptance of rehabilitation robotics is the most significant change we’ll see in the next decade, said Neville Hogan, a mechanical engineering professor at the Massachusetts Institute of Technology, who spoke at the conference. 

Tech-savvy therapists recognize the value of assistive robotics and see the standardized data collection they afford as a major benefit, Hogan said.

“It’s far less subjective than the clipboard methods of the past, and enhances our ability to tailor therapy to individual patients,” he said.

Dario Farina, chair of neurorehabilitation engineering at the Imperial College of London’s Department of Bioengineering, also presented at the workshop.

His research has enabled the simultaneous processing of hundreds of motor neurons — the signals the brain sends to muscles — without invasive procedures.  The breakthrough has challenged classic views on the neural activity that drives steadiness in the performance of precise tasks and is expected to result in prosthetic devices that give patients unprecedented levels of fine motor control. 

“In the near future, it will be possible to fully decode the neural information sent from the spinal cord and build man-machine interfaces for the natural and dexterous control of bionic limbs,” Farina said, explaining that patients will be able to control prosthetic devices with the same, automatic mental commands used to control their natural hands.

Because health problems affect patients differently, fine-tuning rehab therapies is the next focus for Panagiotis Artemiadis, an ASU mechanical engineer whose research includes mechatronics and human-robot interaction.

“In the next five years,” he said, “we’ll be able to adjust robotics to be patient specific.”

 

Top photo: At the fifth annual Rehabilitation Robotics Conference, Denise Oswalt demonstrates a virtual reality application from the lab of Bradley Greger, an ASU researcher who specializes in neural engineering. Photo by Jessica Hochreiter/ASU

Terry Grant

Engineering Media Relations Officer , Ira A. Fulton Schools of Engineering

480-727-4058

 
image title
ASU method for detecting pancreatic cancer early promises to save lives.
February 8, 2017

Biodesign professor Tony Hu and team publish study in journal Nature

Pancreatic cancer, one of the nation’s deadliest diseases, kills 80 percent of those diagnosed within one year, but an ASU researcher has devised an early detection technique that could help improve those odds, according to a new study.

Biomedical engineering professor Tony Hu, of the Biodesign Virginia G. Piper Center for Personalized Diagnostics, and colleagues, in research published online by the journal Nature: Biomedical Engineering, describe a method for finding tiny bubbles of material called extracellular vesicles, which can identify pancreatic cancer in its initial stages.

ASU professor
Tony Hu

“Pancreatic cancer is one type of cancer we desperately need an early blood biomarker for,” Hu said.

Typically, pancreatic cancer, which kills about 40,000 people a year, has few symptoms, spreads quickly and isn’t diagnosed until it’s in an advanced stage. About 95 percent of patients die within five years of diagnosis. 

“Other technology has been used for detection, but it doesn’t work very well because of the nature of this cancer,” Hu said. “It’s really hard to capture an early diagnostic signal when there are no symptoms. It’s not like breast cancer, where you may feel pain and you can easily check for an abnormal growth.”

Hu’s research, a pilot study involving nearly 160 people, showed the ability to differentiate patients with pancreatic cancer, pancreatitis and healthy subjects.

If proved effective on a larger scale, it could lead to a screening exam that could save lives. Further, the technique may ultimately be used to detect a range of diseases based on their unique extracellular vesicle signatures. (Hu’s team, in a small study, has already shown the ability to detect tuberculosis.)

The new method detects EVs derived from tumors that carry a particular surface protein that functions as a telltale marker for pancreatic cancer. The ability to accurately detect this protein, known as EphA2, may allow it to serve as a signpost that could diagnose even the earliest stages of pancreatic cancer.

To learn more about the science, click here

 

Top image: Exosomes are a form of extracellular vesicle released from most kinds of prokaryotic and eukaryotic cells. Once thought to be mere detritus from cellular metabolism, they are now linked with many critical forms of cell signaling and immune function and play a vital role in a host of diseases, particularly cancer, where they may act to aid metastasis and thwart anti-cancer therapies. Graphic by Jason Drees.

Richard Harth

Science writer , Biodesign Institute at ASU

480-727-0378