Engineering prof helping to boost capabilities of leading national research center


September 21, 2011

New imaging facility will provide deeper knowledge about fundamental nature of materials

An Arizona State University engineering professor and collaborators at Argonne National Laboratory are working to pave the way to study technologically important materials in more revealing ways than ever before. Stronger materials Download Full Image

They are playing an important role in expanding the capabilities of Argonne with development of an innovative facility for high-energy X-ray tomography research.

The high-energy X-ray synchrotron tomography X-ray beamline “will provide major improvements in the performance of X-ray sources that will allow us to gain new insights into potential solutions to some of the most fundamental problems of science and engineering,” said Nik Chawla, professor of materials science and engineering in the School for Engineering of Matter, Transport, and Energy, one of ASU’s Ira A. Fulton Schools of Engineering.

The facility will be one part of an upgrade to enhance the capacity and capabilities of the Advanced Photon Source at Argonne, one of the nation’s most prominent science and engineering centers.

Argonne, located near Chicago, is the oldest U.S. Department of Energy (DOE) national laboratory. Its Advanced Photon Source is one of five national synchrotron light- source research facilities operated by the DOE’s Office of Science.

On Sept. 15, William Brinkman, director of the DOE Office of Science, approved Critical Decision 1 for the Advanced Photon Source upgrade.

The decision formally approves the alternative selection and cost range for the upgrade, establishing the preliminary technical scope of the project and authorizing the detailed preliminary design, as well as initial research and development activities. Funding for the project will be subject to congressional appropriations.

Chawla and Francesco De Carlo, leader of the X-ray Imaging Group in the Argonne X-ray Science Division at the Advanced Photo Source facility, have been at the helm of a team of engineers and scientists making the case to the energy department’s science office officials about the benefits the nation could reap by investing in the advanced tomography research technology.

The international team led by Chawla and De Carlo includes engineers and scientists from the Nanjing Institute of Geology and Paleontology in China; the University of Melbourne and Monash University, both in Australia; the University of Maryland; and East Tennessee State University – as well as researchers at Argonne.

Chawla said the tomography facility promises to provide insights into ways to improve materials used in aircraft, automobiles, ships, and a broad array of other vehicles, devices and electronics components.

 It will also yield knowledge to help engineers design bridges, dams and similar structures that are more resistant to materials defects that lead to structural failures.

In addition, he said, the new imaging technology will allow geologists and paleontologists to perform more intricate examinations of rocks and fossils – enabling them to uncover more revealing information about the Earth’s natural history and evolution.
 
“Before, we could look only so deep.  You needed thin slices or very small pieces of materials if you wanted to get clear imaging of their basic microstructures,” Chawla explained.

“Now we will be able to penetrate much larger and thicker specimens. We can handle materials of larger sizes, volumes, and higher density. More importantly we can now see changes to the microstructures in real time, in three dimensions, to examine more precisely what occurs when the materials are exposed to thermal or mechanical stimuli,” he said.

The new imaging capabilities will also allow researchers to better predict how materials will behave over time under various kinds of pressure, stress and climate conditions.

Through Chawla, ASU will have an important role in developing future research avenues for the new X-ray tomography facility. Leading research institutions from around the world are expected to make requests to use the new facility.

Joe Kullman

Science writer, Ira A. Fulton Schools of Engineering

480-965-8122

Be part of a problem-solving online site with 10,000 Solutions


September 21, 2011

Our world is rife with problems, but it also has many creative thinkers who can tackle tough issues when they work together. Arizona State University is inviting the community to work on the world’s greatest challenges by launching the 10,000 Solutions project.

The website 10,000solutions.org is a problem-solving site that ignites the power of collaborative imagination. The project offers a place where students, faculty, staff, alumni and members of the public can share their ideas to impact local and global communities as well as build on others' ideas. Those who post solutions are also in the running for a $10,000 prize. Download Full Image

Already uploaded on the site are ideas about making healthy food more readily available at ASU, learning more about personal financial management, designing a disaster response app and creating a stronger sense of community.

“We’re looking for people to work together to impact local and global communities,” said Nikki Gusz, innovation developer for the Office of University Initiatives at ASU. “People can take an idea and run with it in their own way and in their own community.”

Many of the same features that are included in blogs are available with 10,000 Solutions. Users can comment on posts and “like” another collaborator’s solution.

Information is collected virtually through online posts, videos and photos. Users submit solutions that address issues in eight categories – education, technology, communities, sustainability, economy, health, human rights and discovery. Using tags to categorize information allows for the creation of online communities of people interested in the same issue.

The first phase of the 10,000 Solutions project runs through April of 2012 with follow-up phases to be determined depending on ideas that are generated and how the project evolves. Teams working on 10,000 Solutions include researchers working through a National Science Foundation grant to study how Challenge sites work and a faculty-staff leadership team working to engage people from all areas of the university.

Students also play a key role in 10,000 Solutions. “One of the most important and critical things about 10,000 Solutions is that it is at the baseline of innovation and engaging students in programs,” said ASU student Leah Luben, an economics major in the College of Liberal Arts and Sciences. Luben is also one of the student leadership team members for Changemaker Central. 10,000 Solutions is a signature program of Changemaker Central, a student-run resource hub on all four campuses that provides students with resources and opportunities to inspire, catalyze and sustain student-driven social change.

“10,000 Solutions takes effort to walk away from,” Luben said. “There is no expectation on who can participate. This makes 10,000 Solutions engaging to a wide variety of people.”