Energy grant to help ASU advance carbon capture technology

November 26, 2012

Scientists to tame power plants by efficiently capturing carbon emissions

The U.S. Department of Energy has awarded Arizona State University a grant for alternative energy research that is part of a special DOE program to pursue high-risk, high-reward advances with the potential to change the way the nation generates and consumes energy. Daniel Buttry and students Download Full Image

The grant, led by Dan Buttry, professor and chair of ASU’s Department of Chemistry and Biochemistry, in the College of Liberal Arts and Sciences, is to develop an efficient and cost-effective carbon capture technology using an innovative electrochemical technique. ASU will separate carbon dioxide from other emissions coming from power plants with the real possibility of reducing energy and cost requirements by more than half. This could be an economically enabling breakthrough in the drive to reduce carbon dioxide emissions.

“Through this type of venture we are working to advance research and spur economic development in the areas of renewable energy and energy security to create solutions that address society’s grand challenges,” said Sethuraman “Panch” Panchanathan, senior vice president for ASU’s Office of Knowledge Enterprise Development. “This innovative project is a collaborative effort of faculty at ASU from multiple disciplines who are developing a new carbon capture technology.”

DOE’s Advanced Research Projects Agency-Energy (ARPA-E) program has the goal of developing clever and creative approaches to transform the global energy landscape, while advancing America’s technology leadership. ASU’s grant is for $612,000 for one year.

In announcing the awards, U.S. Energy Secretary Steven Chu said: “With ARPA-E and all of the Department of Energy’s research and development efforts, we are determined to attract the best and brightest minds at our country’s top universities, labs and businesses to help solve the energy challenges of this generation. The 66 projects selected today represent the true mission of ARPA-E: swinging for the fences and trying to hit home runs to support development of the most innovative technologies and change what’s possible for America’s energy future.”

Inspired by the Defense Advanced Research Projects Agency, ARPA-E was created to support high-risk, high-reward research that can provide transformative new solutions for climate change and energy security. The projects were selected through a merit-based process from thousands of concept papers and hundreds of full applications. The projects are based in 24 states, with approximately 47 percent of the projects led by universities, according to the DOE in a Nov. 28 release announcing the awards. 

ASU has been building up its portfolio in alternative energy research for several years and currently includes, among its capabilities, a center for research into electrochemistry for renewable energy applications; several advanced programs on solar energy research; one of the leading testing and certification centers for solar energy; and research into solar-generated biofuels including advanced work on algae-based biofuels.

“The potential of this project to advance solutions to the problem of excessive carbon dioxide in the environment is exciting and we look forward to the team’s progress in this area,” said Gary Dirks, director of ASU LightWorks. “ASU is a place where the convergence of laboratory research and real-world application creates a unique environment where imaginative energy-related projects are fostered and encouraged.”

The carbon capture program was initially supported by ASU LightWorks, which brings together the intellectual expertise across the university centered on leveraging the power of the sun to create solutions in the areas of renewable energy, including generating electricity, alternative fuels and preparing future energy leaders.  

“We are extremely excited about this new grant from the Department of Energy ARPA-E program," said lead ASU researcher Dan Buttry. "The effort is focused on a key issue in fossil fuel-based energy production – how to reduce atmospheric carbon dioxide emissions without consuming too much of the energy content of the fuel. We have recently developed a new approach to carbon dioxide capture that uses an electrochemical process with some design features similar to those in a fuel cell.”

Co-principal investigators on this project are Cody Friesen, SEMTE-Ira A. Fulton Schools of Engineering; Vladimiro Mujica, Department of Chemistry and Biochemistry; and Ellen Stechel, Department of Chemistry and Biochemistry and also deputy director of LightWorks. Buttry and Friesen previously worked on an ARPA-E project developing a radical new design for automotive batteries.

The only proven commercially viable technology for flue gas capture uses compounds called amines in the so-called monoethanolamine (MEA) process. Several plant scale demonstrations use this old technology, first patented in 1930. The MEA process has several drawbacks, particularly the energy required for thermal regeneration of the amine capture agent. As discussed in a recent Department of Energy report (DOE/NETL-2009/1366), for typical conditions, the energy required for this process consumes roughly 40 percent of total plant output and increases the cost of electricity by 85 percent.

Buttry sees their current approach as having an overall efficiency far better than existing approaches.

“While there are many interesting basic science questions about how the separation works, the ARPA-E program’s emphasis on rapid implementation of technologies will have us running our fastest to accomplish the 'proof of concept' program goals in the 12-month grant period," Buttry said. "Fortunately, we have assembled a terrific team from ASU’s Department of Chemistry and Biochemistry, ASU LightWorks and the Fulton Schools of Engineering to hit the ground running.

"What we hope to accomplish is a demonstration of efficient and cost-effective carbon dioxide capture so we can move into a second phase of the project that would involve rolling the technology out into the marketplace.”

Written by Jenny Green

Media contact:
Amelia Huggins, (480) 965-1754
Office of Knowledge Enterprise Development
Arizona State University

Jenny Green

Clinical associate professor, School of Molecular Sciences


New collaboration targets rare, deadly malignancy

November 27, 2012

Desmoplastic small round cell tumor (DSRCT) is a devastating variety of cancer, predominately striking boys and young adults. The exact causes of this rare disease remain shadowy, though the prognosis is bleak. Fewer than 20 percent of those diagnosed survive for more than 5 years. 

Now Valentin Dinu, a researcher at Arizona State University and specialist in bioinformatics and Joshua LaBaer, two members of the Virginia G. Piper Center for Personalized Diagnostics at the Biodesign Institute have teamed up with Pooja Hingorani, an oncology/hematology physician at Phoenix Children’s Hospital, to explore the underpinnings of DSRCT with unprecedented precision. Their insights will hopefully pave the way for the design of novel therapeutic agents to treat this deadly disease. Download Full Image

The new project is funded by a 3 year, $250K grant from Hyundai Hope on Wheels, a nonprofit organization, committed to the fight against pediatric cancer. Since its inception in 1998, Hyundai Hope on Wheels has donated $48 million to fund pediatric cancer research nationwide.

The lion’s share of the new award will be used to conduct next generation sequencing of the genomes derived from DSRCT pediatric tumor samples and to perform bioinformatic analyses of the resulting data.  

“We are very grateful to the Hyundai Hope on Wheels organization for financially supporting this research project,” Dinu says. “We look forward to working closely with our collaborators from Phoenix Children’s Hospital and the Biodesign Institute to study the biology of DSRCT by applying some of the most advanced genomics sequencing and informatics techniques. Our ultimate goal is to develop improved diagnostic and treatment options for this devastating malignancy that affects young adolescents.”  

The Department of Biomedical Informatics (BMI) at ASU is engaged in a number of significant area partnerships, uniting academic researchers, clinical practitioners and regional health care providers. The department recently moved to its new home on the Scottsdale campus of Mayo Clinic as part of the university’s deepening ties with Mayo in health care, medical research and education. Here, Dinu will carry out the informatics and data analysis work. 

LaBaer will perform the genomic sequencing at the Center for Personalized Diagnostics at Biodesign, an institute devoted to developing new diagnostic tools to pinpoint the molecular manifestations of disease based on individual patient profiles. 

Using their combined expertise, the researchers hope to open a new window onto the particular genomic aberrations linked with DSRCT. “We are very excited about the opportunity to study the underlying genomics of this difficult disease that affects children,” LaBaer says. “The power of these new genome scale sequencing methods will fundamentally alter our understanding of how these cancers begin and how they change over time.”

Desmoplastic small-round-cell tumor is an aggressive, soft tissue sarcoma, typically causing the formation of masses in the abdomen, though affected areas may also include bone, soft tissue, lung, ovary, kidney and central nervous system. The cell origin for the disease is still unknown though it is believed to arise from the mesenchyme. 

The malignancy may metastasize from its original site to the liver, lungs, lymph nodes, brain, skull, and bones. DSRCT is 4 times as likely to occur in males and its occurrence in females may be mistaken for ovarian cancer. The incidence of DSRCT is also higher in African-Americans than Caucasians. 

The researchers explain that the rareness of the disease has thus far precluded comprehensive studies of DSRCT biology, hence a lack of clinically relevant targets on which to base an effective therapy. The goal of the proposed study is to identify novel genetic aberrations in DSRCTs through the use of next generation genomic sequencing (NGS) technology. 

Since the first successful draft of the human genome was released in 2000, the race has been on to find cheaper and more rapid techniques. The new armament of technologies involves strategies to parallelize the sequencing process, enabling researchers to concurrently sequence hundreds of millions of genomic fragments at a time, generating tens of billions of base reads per experiment.

NGS will allow Dinu and LaBaer to mine vital information from the genomes derived from DSRCT-positive samples, revealing copy number changes, allelic aberrations, somatic rearrangements and base pair mutations, producing an enormous quantity of genomic sequence data. Costs associated with whole genome sequencing have recently plummeted, permitting the design and execution of studies capable of rapidly pinpointing potential disease-associated genetic variants. The technique has been used successfully to identify genetic abberations in such diseases as pancreatic cancers, glioblastoma multiforme, lung cancer, ovarian cancer and breast cancer.

Dinu and LaBaer insist the time is ripe to apply such methods to less common (yet lethal) forms of cancer, including DSRCT in order to uncover therapeutic candidates and improve the chances for patients stricken with such diseases. The team will perform whole genome DNA and RNA sequencing on tumor samples and their corresponding matched normal samples, in order to identify novel mutations, single nucleotide polymorphisms or other genomic aberrations associated with these tumors. 

The researchers stress that while the sample size used for the current project is small, the enormous volume of genomic data acquired should allow a positive identification of variants implicated in the disease. A collection of these variants – identified in DSRCT samples but absent in normal tissue – will act as biomarkers for the disease and may be applied for earlier and more accurate diagnostic purposes, as well as to provide plausible targets for future treatment. The group’s results will be cross-checked and validated using additional testing methods, such as Sanger sequencing or quantitative PCR. 

Valentin Dinu is assistant professor in the Department of Biomedical Informatics at ASU and faculty member of the Virginia G. Piper Center for Personalized Diagnostics at ASU’s Biodesign Institute. 

Joshua LaBaer directs the Virginia G. Piper Center for Personalized Diagnostics at ASU’s Biodesign Institute and is a professor in the Department of Chemistry and Biochemistry in ASU's College of Liberal Arts and Sciences.

Richard Harth

Science writer, Biodesign Institute at ASU