Making an impact

The idea for the test sprung up when Hu was a chemist at the University of Texas Houston, working on new nanotechnology development — but he realized there were no known applications to the technology he was developing yet. He attended a biochemistry lecture that got him thinking about using it for diagnostics and decided to move into the biomedical engineering field seeing how his current skillset could be enhanced and applied for medically relevant purposes.

One of the hurdles they had to overcome was that biomarkers had not been detected in the blood before that were specific for active cases of TB. The team did extensive analysis on protein fragments and eventually found ones that made testing sensitive to even the difficult to detect cohorts like the commonly fatal HIV-TB co-infected.

“This exploratory work is in itself ground-breaking due to the wealth and quality of clinical and bacteriological data to match with biomarker responses,” Hu said. “The new insights gained will promote future work in the field of markers of treatment response in children with TB. This research is critical to pave the way to more appropriate management of children with TB.”

With the NICHD funding support, Hu’s team will combine the powers of advanced nano-sensing technology and TB molecular biology, and intend to optimize and validate a quantitative biomarker detection and monitoring platform that works in tandem with “miniaturized” mass spectrometry.

At the core of the technology, Hu’s lab developed nanoparticles with very specific antibodies attached, through which blood and eventually urine samples can be used to detect TB. This is a much faster and less invasive approach than the current methods of coughing up sputum, biopsy, spinal taps or growing blood cultures.

For this grant, Hu’s lab has partnered with Stellenbosch University's Desmond Tutu Tuberculosis Centre to test blood samples from infected patients. South Africa has the fourth highest TB rate in the world, while the Western Cape Province has the highest number of new TB cases in the country, the Desmond Tutu Centre is in the unique position to have access to a large variety of samples from their community.

The grant aims to validate and develop a quantitative model for active TB in which they could potentially test the effectiveness of treatment as well by testing the blood at various time intervals throughout treatment.

“The proposed work on evaluating our Nanoparticle-MS assay as a marker of TB treatment response will ensure unprecedented in-depth engagement with the bioanalytical and clinical data, and thus improve data management and interpretation of results, leading to clinically relevant outputs, and new hypotheses and insights,” Hu said.

Eventually, once the system has been refined the goal would be to us this accurate, high-throughput testing method with an easy-to-use shoe-boxed size detection system which would allow this technology to reach some of the world’s populations that are most in need.

Written by: Lerys del Moral, freelance science writer 

Media contact: Joe Caspermeyer, Joseph.Caspermeyer@asu.edu