Skip to Main Page Content

'Spotlight' editor Walter V. Robinson to give Schatt Memorial Lecture at ASU


February 14, 2017

Walter V. Robinson, the Pulitzer Prize-winning editor who led the Boston Globe’s Spotlight investigation into the Roman Catholic Church, is the featured speaker of the 11th annual Paul J. Schatt Memorial Lecture at Arizona State University’s Walter Cronkite School of Journalism and Mass Communication.

Robinson, currently the Cronkite School’s Donald W. Reynolds Visiting Professor, will explore the past, present and future of investigative journalism during a public lecture at 7 p.m. Monday, Feb. 27, in the Cronkite School’s First Amendment Forum on ASU’s Downtown Phoenix campus. Walter Robinson Walter V. Robinson, the longtime Boston Globe investigations editor who led the newspaper’s Pulitzer Prize-winning report on the Roman Catholic Church sexual abuse scandal, is the speaker at the annual Paul J. Schatt Memorial Lecture at the Cronkite School. Download Full Image

Robinson serves as editor at large at the Boston Globe, where he has worked for 34 years. Previously, he led the Spotlight team, an investigative unit that won the 2003 Pulitzer Prize for Public Service for its comprehensive investigation into sexual abuse by Catholic priests.

Under Robinson’s leadership, the investigation brought to light a decades-long cover-up that included the crimes of nearly 250 priests. The probe was made into the film “Spotlight,” which won the 2015 Academy Awards for Best Picture and Original Screenplay.

“Walter Robinson embodies the very best in investigative journalism,” said Christopher Callahan, dean of the Cronkite School. “We have seen that first-hand this semester in the way he teaches and inspires our students, and we’re pleased that he’ll be sharing his insights and experiences with the entire school and the public at this event.”

As the Reynolds Visiting Professor at the Cronkite School, Robinson is teaching an investigative journalism class for graduate students and advanced undergraduates. He also works with reporters in Cronkite News, the student-staffed, professionally led news division of Arizona PBS.

Robinson began at the Globe in 1972, where he reported mainly on politics and government. He covered the White House during the Ronald Reagan and George H.W. Bush administrations and was the newspaper’s lead reporter for the 1988 and 1992 presidential elections.

Robinson was the roving foreign and national correspondent for the Globe in the late 1990s. Much of his reporting centered on artwork taken by the Nazis during World War II that ended up in American museums. For his work on the illicit trade of antiquities stolen from archeological sites, he received the first-ever Archaeological Institute of America Award for outstanding public service.

In 2007, Robinson became a distinguished professor of journalism at Northeastern University in Boston, and returned to the Globe as an editor-at-large in 2014.

The Cronkite School established the Schatt Lecture series in 2007 in honor of former Arizona Republic reporter, editor and columnist Paul J. Schatt. Schatt also taught public affairs reporting to Cronkite students for more than 30 years as an adjunct faculty member. The series in his name is supported by an annual gift from The Arizona Republic and an endowment created in Schatt’s memory by his widow, Laura Schatt-Thede.

Previous speakers have included Washington Post National Political Editor Steven Ginsberg, Pulitzer Prize-winning journalist and author Thomas E. Ricks, New York Times Deputy Editorial Page Editor Carla Robbins, CNN Senior Media Correspondent Brian Stelter and award-winning investigative journalist and author Mitchell Zuckoff.

Communications manager, Walter Cronkite School of Journalism and Mass Communication

602-496-5118

Pervasive chemicals pose threats for pregnant women, their offspring


February 14, 2017

Each day, we are exposed to an array of chemicals lurking in the foods we eat and the common products we use. Pregnant women and their developing offspring are particularly at risk for the adverse health effects such chemicals sometimes cause, but the scientific evidence necessary to make informed choices has been lacking.

In a series of innovative, multi-institutional studies, Rolf Halden, a researcher at Arizona State University’s Biodesign Institute, has tracked the effects of a wide range of chemicals on human health and the environment. In a pair of studies appearing in the journal Environmental Research and the advanced online edition of the Journal of Hazardous Materials, Halden and collaborators examine human exposure to several common chemicals and evaluate resulting health outcomes in mothers and infants. Rolf Halden directs the Biodesign Center for Environmental Security. He is a professor in the Ira A. Fulton Schools of Engineering's School of Sustainable Engineering and the Built Environment as well as senior sustainability scientist with ASU's Global Institute of Sustainability. Download Full Image

In the first of these studies, Halden’s team explores the effects of methyl mercury on blood pressure in pregnant women, while a companion paper provides the first evidence linking common chemicals found in cosmetics (known as parabens), as well as the antimicrobial agent triclocarban, to measurable adverse health effects in newborns who have been exposed to these chemicals in the womb.

The studies significantly add to the still-limited information on threats posed by methyl mercury, parabens and antimicrobials to fetal and maternal well-being. They also raise questions about whether more aggressive steps are warranted to help society avoid harmful exposures and their consequences.

“These new studies reveal the presence of environmental toxicants in U.S. babies at birth and provide the first insights into possible associations between chemical uptake and adverse birth and health outcomes,” Halden said.

Under pressure

It has been known for some time that women with chronic or pre-existing high blood pressure are at higher risk not only for cardiovascular disease — the leading cause of death in the United States — but also for various complications during pregnancy, compared with mothers having normal blood pressure. Some women only develop high blood pressure during the course of their pregnancy, a condition known as gestational hypertension, which can likewise lead to problems for mother and developing infant alike.

One of the most common and potentially serious consequences of elevated blood pressure during pregnancy is preeclampsia, which may affect the proper functioning of organs like the kidneys and liver, leading to adverse effects on offspring including premature birth, low birthweight and placental abruption — a condition causing the placenta to peel away from the inner wall of the uterus before delivery.

In the new study, Halden and colleagues examine the effects of mercury, an environmental contaminant from coal-burning power generation and known chemical risk factor during pregnancy. They note that research to date has often produced contradictory findings. The paper identifies two primary sources of data inaccuracies: mercury speciation and confounding factors, and attempts to control for each in order to provide more informative and accurate results.

Speciation is important as mercury does not occur in a single form. Rather, different types or species of mercury may be present in the environment. While both inorganic and organic mercury compounds are toxic, most sources of inorganic mercury have been banned since 1990 in the United States, dramatically limiting common exposure of the population. Mercury released into the atmosphere during burning of coal and oil, however, still represents a major environmental input. Upon deposition on water and soil, microorganisms can convert this metallic mercury into organic mercury compounds, including the highly toxic methyl mercury that tends to accumulate in foods, particularly, seafood.  

Conventional measurements of total mercury levels in human blood fail to draw out the subtle distinctions between various mercury subtypes. Further, levels of other critical substances may alter the laboratory findings, particularly fatty acids commonly found in fish (known as n-3 or omega-3 fatty acids) and the chemical element selenium, each of which can interfere with the assessment of effects of mercury toxicity.

The new study controls for these factors, with intriguing results. The research examined the umbilical cord blood and blood pressure of 263 pregnant women, during labor and delivery. Data on maternal age, race/ethnicity, prepregnancy body mass index, neighborhood income, parity and smoking were also gathered and evaluated. (Cord blood is considered a good proxy for estimating maternal exposure to mercury.)

The results indicated that systolic blood pressure and pulse pressure in the women rose with increasing concentrations of methyl mercury (MeHg) measured in cord blood, but decreased with increasing concentrations of inorganic mercury (IHg). (No associations were found between elevated mercury levels of either species or total mercury level with diastolic blood pressure.) The underlying mechanisms of these blood pressure alterations under the influence of methyl and inorganic mercury are presently not understood.

Methyl mercury is a known neurological toxin, but cardiovascular toxicity may also result from ingestion. The primary source of methyl mercury exposure is the consumption of fish and other seafood. Despite the long-recognized susceptibility of pregnant women to cardiovascular risk, little previous research has been devoted to the potential effects of mercury exposure on cardiovascular health during pregnancy. Commonly, such studies have relied on sometimes misleading measurements of total mercury level, rather than speciated mercury separated by particular subtype.

This lack of specificity with respect to mercury speciation has led to confusion when assessing health risks to mothers and newborns. Overestimates of MeHg can occur when total mercury content (including IHg and MeHg) is used as a proxy for MeHg. This is particularly true for populations where fish is less common in the diet.

Further, while mercury exposure can act to reduce the size of babies at birth, the presence of nutrients including selenium and fatty acids in fish tend to enhance fetal growth, thus blurring the picture.

Cosmetic alterations

In a second study, Halden and his colleagues examine birth outcomes for an immigrant population in Brooklyn, New York, following chemical exposure. Earlier studies have suggested that fetal exposure to antimicrobials and paraben compounds (common ingredients in many cosmetics) can adversely affect health.

Previous research by Halden’s group confirmed elevated levels of these chemicals in both mothers and developing fetuses. The new study advances this work by presenting the first human data examining effects on the health of newborns from fetal exposure to these chemicals. The study evaluates a range of variables in the newborns, including birth weight, body length and head size, and gestational age at birth, assessing 185 mothers and 34 neonates in New York, from 2007-2009.

Measurement of chemical concentrations involved testing the urine and umbilical cord blood plasma from mothers in their third trimester. The results provide the first positive associations between exposure to antimicrobial agents and adverse health outcomes for newborns. The findings are consistent with animal models of antimicrobial and paraben exposure, which suggest these chemicals can act as potent disrupters of the hormonal or endocrine system.

Parabens, triclosan and triclocarban fall under the general heading of environmental phenols. They have a propensity to cause hormonal disturbances to fetuses, both in the womb and following birth. Mothers are exposed to these chemicals primarily through the use of cosmetics and personal-care products containing them. Fetuses get exposed in the womb through the placenta and newborns also can ingest residues of such chemicals contained in breast milk.

Parabens not only appear in cosmetics, but also as preservatives in various foods. They have been found to influence estrogen levels, suggesting they may be toxic to the reproductive system. Two antimicrobial agents known as triclosan and triclocarban (TCS and TCC) have found their way into a vast array of common products from personal care to industrial cleaning, and also display a potential for endocrine disruption.  

TCC is an ingredient in many soaps and the authors note that measurable amounts of the chemical can be detected in urine samples after even a single use of antimicrobial soap. Previous animal studies have shown some problematic associations, linking TCC exposure to liver tumors, though the effects on human infants have remained largely speculative until now.

The new study examined archived samples of third trimester maternal urine (sixth–ninth months) and human cord blood plasma, collected at two different time points. The subjects were women 18-45 years old who earlier were evaluated for fetal exposure to mercury, TCS and TCC. A questionnaire was used to gather demographic data, including maternal age, race/ethnic origin, and education level, medical history, and to assess sources of environmental chemical exposure, for example, to mercury.

The research results represent the first experimental evidence of adverse birth outcomes in babies exposed to triclocarban (TCC) and its metabolites in the womb. The findings show increased odds of pre-term birth due to the chemical butylparaben, decreased gestational age at birth due to butylparaben and TCC, decreased birth weight due to butylparaben and decreased body length, due to propylparaben.

The study also measured protective effects on pre-term birth due to benzylparaben (BePB) and low birth weight, due to triclcarban. No associations were observed for methyl-paraben (MePB), ethylparaben (EtPB) or triclosan.

The authors note that the observed effects of parabens and antimicrobials on these crucial parameters of growth may be precursors to other negative effects on developmental well-being in childhood and perhaps, later in life. This is of concern, given the ubiquitous presence of these endocrine-disrupting chemicals in cosmetics and personal-care products, placing babies at high risk for exposure.

“Results from this study emphasize opportunities of expecting mothers to optimize the health of their offspring by observing health advisories for seafood consumption and by avoiding contact with personal-care products that contain unnecessary and potentially harmful antimicrobial agents,” Halden said.

Richard Harth

Science writer, Biodesign Institute at ASU

480-727-0378