Skip to main content

Center adds new dimension to ASU’s materials science research


Researchers, stakeholders and partners view a demonstration of new equipment in the Center for 4D Materials Science, or 4DMS, to gain an understanding of the center's new capabilities for materials science research. Photo by Marco-Alexis Chaira/ASU

|
January 30, 2017

A new research center, devoted to studying the structure of advanced, high-performance materials in three dimensions was established within the Ira A. Fulton Schools of Engineering this month.

Headed by Nik Chawla, professor of materials science and engineering, and funded by a collaboration between Arizona State University, Zeiss and the Office of Naval Research, the Center for 4-D Materials Science, or 4DMS, provides a unique and groundbreaking dimension to materials research — time.

The foundation of materials science and engineering is the understanding a material’s structure and how that affects properties and performance. 4DMS will build on that foundation by granting researchers the ability to monitor and analyze materials in real time.

“We typically think of sectioning a material and looking at its structure in two dimensions, which can often lead to limited or erroneous results and interpretations. With the new center, we are looking at a new paradigm in materials science — studying the structure of materials in three and four dimensions,” said Chawla at the outset of a two-day kickoff event for 4DMS.

4DMS will explore materials science with multiscale modeling and characterization of materials under different stimuli, such as mechanical, thermal, electrical and more, over time. The center has new, state-of-the art equipment and capabilities, including X-ray microtomography, which boasts resolution of less than 1 micrometer and focuses ion beam microscopy with resolution at the nanometer scale. In addition, the center will house a first-of-its kind lab-scale diffraction contrast tomography system to study the crystallography of materials in 3-D and 4-D.

The cutting-edge equipment enables researchers to witness and analyze occurrences such as the deformation of microelectronic packaging in materials as it happens on a macro- or nanoscopic level. This capability will not only lead to a broader understanding of materials’ chemical and physical structures, their limitations and strengths, but will lead to the fabrication of the next generation of materials for a variety of applications.

Along with Chawla, additional faculty from the School for the Engineering of Matter, Transport and Energy will be working in the Center, contributing to research projects, including Associate Professors Yongming Liu and Kiran Solanki as well as Assistant Professors Yang Jiao, Konrad Rykaczewski and Jagan Rajagopalan. True to 4DMS’ interdisciplinary nature, Professor Narayanan Neithalath of the School of Sustainable Engineering and the Built Environment will bring his expertise in sustainable construction materials to the Center as well.

4DMS held a kickoff event on Jan. 20 and Jan. 21, convening stakeholders and collaborators to discuss the new center and its research.

“This is about partnerships,” said Kyle Squires, dean of the Fulton Schools, at ASU's University Club. “We can’t achieve big goals without partners who are really invested, and Nik’s center is a good example.”

Though a joint investment of $4 million from ASU, Zeiss and the Office of Naval Research got 4DMS started, additional sponsorship came from government agencies Los Alamos National Lab, the National Science Foundation, the Air Force Office of Scientific Research, and industry partners Qualcomm, Toyota and Intel.

Squires also lauded the Fulton Schools faculty as integral to the future success of 4DMS and its research: “The scale and the depth of what they’re working on is impressive. It’s as good as any place else, and I think that was an attractor for Zeiss. Everyone here is working at the top of their field.”

Arno Merkle, of the Materials Science Group at Zeiss, echoed Squires’ thoughts on the importance of partnership.

“We have a thousand ideas, and we can only invest in a few to do them well,” Merkle said. “Part of our process of doing that is going out to Nik, who is one of the leaders in the community and seeing beyond the next five, 10 years and really validate a certain modality will have utility for the science in the future.”

During the event, Chawla noted that Sethuraman “Panch” Panchanathan, Executive Vice President and Chief Research and Innovation Officer of Knowledge Enterprise Development, was instrumental in getting the center started. He recalled walking into Panchanathan’s office years ago to pitch him the idea.

“Many people walk into my office,” Panchanathan said. “But it’s very easy to invest in initiatives when you know the idea is fantastic, when you know we have a fantastic leader with a fantastic team.”

Researchers, partners and stakeholders in the Center for 4-D Materials Science, or 4DMS, gather before Old Main on the Tempe Campus for a group photo during the center's two-day kickoff event. Photo by Marco-Alexis Chaira/ASU

Director of the Advanced Materials Initiative at ASU Bill Petuskey’s remarks centered around the university’s status as a leader in materials science.

“ASU has had a long history in developing new technologies and applying them in characterizing materials at very fine scales,” said Petuskey, pointing to the LeRoy Eyring Center For Solid State Science as a particular example of the university’s excellence in the field.

Holding up his mobile phone, Petuskey said, “We can think of this as a collection of many materials that are slapped together to create functionality, but in a sense, it’s one very complex material that consists of individual components, interfaces as well as the software that is embedded. Looking at making materials more complex gives us that functionality we need.”

Jim Sharp, president of Carl Zeiss Microscopy LLC, spoke of the importance of keeping close ties with researchers working with his company’s equipment.

“Typically, the day we ship a new machine, we know more about it than anyone else in the world. About six months later, guess who knows more about that machine than we do? You do,” he said to the room of researchers. “Because you’re doing things with it we couldn’t possibly do. And if we don’t stay collaborative with you, we’ll go out of business.”

The second day of the event consisted of interactive sessions hosted by representatives from both Zeiss and ASU in the 4DMS facilities housed within Interdisciplinary Science and Technology Building 4. 

“This truly reflects what ASU stands for, which is bringing together a transdisciplinary group of people to work,” said Panchanathan, pointing to the array of disciplines involved in 4DMS, from materials science, mechanical and civil engineering to chemistry, physics and computer science. “Problems are not one-dimensional. It requires inspiration from multiple disciplines to bring real solutions to problems, and that what ASU prides itself on.”

More Science and technology

 

Student using laptop computer

ASU class explores how ChatGPT Enterprise can assist in scholarly writing

Just over a month ago, Jacob Greene received a notification he’d been waiting for — his proposal to use ChatGPT Enterprise was…

March 27, 2024
Outdoor ASU sign reading "New schools New degrees New buildings" in front of a building.

New engineering degrees at ASU aim to open pathways, empower engineering expertise

It doesn’t take an extensive internet search to discover that engineering has become one of the most rapidly and broadly…

March 26, 2024
Graphic illustration of a close-up view of the gut microbiome.

Study: Combining info on genes, gut bacteria enhances early disease detection

Identifying those at highest risk for developing common chronic diseases like heart disease, diabetes, Alzheimer’s disease and…

March 26, 2024