image title
ASU professors, students conduct research on Antarctica.
Antarctica, where most of the populace is researchers, including some from ASU.
January 25, 2016

Students and faculty at ASU have been digging out their hats, scarves and boots this year as Arizona experienced a colder-than-usual winter. But for Sethuraman “Panch” Panchanathan, ASU’s senior vice president for Knowledge Enterprise Development, this winter has felt positively balmy after a recent trip to Antarctica. 

Panchanathan was invited to visit Antarctica with the National Science Foundation (NSF) as part of his role on the National Science Board. Board members, appointed by the president, advise on national policies regarding research and education in science and engineering.

While there, Panchanthan visited multiple research sites and learned about the NSF-funded work happening at each — exploring stars in the night sky, ozone in the atmosphere, life in an extreme ecosystem and neutrinos bombarding the Earth, among others.

“The most exciting part for me was to find the science that’s going on that is done by our graduate students and scientists,” Panchanathan said. “The level of commitment that they have to pursue science, that they will spend that much time in Antarctica, was truly inspirational.”

Although Antarctica is a harsh environment, it is an excellent location for many types of research, according to the NSF:

• Antarctica is an ideal astronomical observatory, with long periods of darkness in the Antarctic winter and no interfering city lights.

• Antarctica is where most of the world’s meteorites are found.

• The Southern Ocean is the largest and most fertile of the world's oceans. Its cold, constant temperatures provide a unique opportunity to study "deep sea" life in relatively shallow water.

• With almost 10 percent of Earth's continental crust, Antarctica holds substantial geologic records of plate tectonic processes, evolution and dispersal of life, and evidence of past environmental conditions.

• In some areas, such as the Dry Valleys, erosion is extremely limited, so fossils of past life have not been destroyed.

• The Dry Valleys are also ideal for studying adaptation to extreme environments.

As Panchanathan was leaving Antarctica, an ASU faculty member, Chris Groppi, and his graduate student Kristina Davis were just arriving. The School of Earth and Space Exploration researchers are among multiple ASU faculty, students and alumni who have visited the coldest continent to learn more about our planet and our universe.

Space balloon

Groppi is an experimental astrophysicist. One of his research projects focuses on uncovering mysteries about molecular clouds. These clouds of gas and dust are the birthplace of new stars and planets. Scientists know molecular clouds exist, but no one knows how they originally formed. They shine in terahertz light, which falls between infrared and microwave radiation on the electromagnetic spectrum.

“Terahertz light is about 5,000 times redder than what your eyes see,” Groppi said.

Earth’s atmosphere absorbs terahertz light before it ever reaches the ground. To see it, Groppi needs to go where the light is visible — about 120,000 feet up into the atmosphere. One option is to build a spaceship, but a better (and 10-20 times cheaper) option is to use a giant weather balloon.

Working with researchers from 12 other institutions, Groppi constructed an experiment that includes a 15-foot tall, 4,000-pound telescope attached to a weather balloon.

The telescope must be cooled down to about -450 degrees Fahrenheit to function properly as it journeys through the stratosphere attached to the balloon. And this is no ordinary balloon: At more than 400 feet in diameter, the Long Duration Balloon is larger than a football field and requires enough helium to fill two semi trucks. It also weighs more than 5,000 pounds.

Antarctica is the perfect place to launch the balloon because of the continent’s weather patterns this time of year. Winds blow in a circle forming the polar vortex. The researchers can send the balloon up into the vortex, where it will make a big circle around the continent and return to the same location in about two weeks.

Groppi has been coming to Antarctica since he was a graduate student. He has worked at both McMurdo StationMcMurdo Station is a U.S. Antarctic research center on the south tip of Ross Island, which is in the New Zealand-claimed Ross Dependency on the shore of McMurdo Sound in Antarctica. — Wikipedia and the South Pole, and says the two locations are quite different.

“McMurdo is a 1,500-person town that has three bars, which are very popular,” Groppi said, adding that it reminded him of “small-town America.” But at the South Pole there are many more people, so it felt less like a town to him and more like a research station.

station in Antarctica seen from top of hill

McMurdo Station seen from the top of
Observation Hill. McMurdo is situated near
the Dry Valleys of the Transantarctic Mountains
and is Antarctica’s largest community.

This and top photo by Chris Groppi.

The coldest desert

Despite the common belief that Antarctica is just a vast expanse of snow and ice, there are actually areas with no ice at all. In fact, McMurdo station is located near the Dry Valleys of the Transantarctic Mountains, which are deglaciated in many places.

That is where Becky Ball has traveled on five separate research excursions. An assistant professor in the School of Mathematical and Natural Sciences in ASU’s New College of Interdisciplinary Arts and Sciences, Ball is a soil bio-geochemist. That’s right, she goes to Antarctica for the soil, which can only be found on the tiny fraction of land — less than 1 percent — that’s not covered by ice sheet.

Ball studies the carbon, nitrogen and phosphorous nutrients in soil and the microbial and invertebrate organisms that help cycle those nutrients. The area where she works is a polar desert, and it’s incredibly dry. The most abundant land animal is a microscopic nematode.

Her most recently funded research will focus on a different part of Antarctica, the Antarctic Peninsula that points out toward South America. For this project, she won’t be stationed on land at all. Ball and her crew, including ASU undergraduate student Connor Wetzel-Brown, will be ship-based, island hopping from top to bottom of the peninsula. They’ll take soil samples along the way at every degree of latitude.

“The climate gets harsher as you go further south, so we’ll look at how climate and other factors influence what lives in the soil,” Ball said.

The peninsula is one of the most rapidly warming places on the planet. This, along with more human activity, has led to an influx of invasive species. Ball is looking to see how these factors are changing the environment, starting with the soil.

Climate change in action

Antarctica is an ideal living laboratory to see climate change in action. It’s also the best place to study the effects of ultraviolet radiation from the stratospheric ozone hole. That was the goal of Thomas “Tad” Day, a plant ecologist and professor in ASU’s School of Life Sciences. In 1995, Day started traveling to the Antarctic Peninsula to examine how plants were being affected by increased sun exposure.

Up to that point, scientists had only studied this phenomenon in the lab. They used sun lamps in an artificial environment, and no one was sure if the findings would translate accurately to the natural world. To find out, Day led a team of researchers to Antarctica. The Antarctic Peninsula is exposed to extremely high levels of ultraviolet rays, making it the perfect field site. Day’s research confirmed that the increased sunlight was impairing plant growth by about 10 to 25 percent.

Antarctica might be perceived by many to be a sprawling, icy mystery, but it’s also the ideal place for some scientists to pursue the burning questions of their field.

“It’s truly a privilege to be able to interact with scientists,” Panchanathan said. “The level of teamwork, friendliness, humanity that was there was amazing to watch and was truly inspiring.”


For more ASU research in Antarctica, check out The roof at the bottom of the world.

To learn more about Chris Groppi's research, watch Student aims for the stars in research, athletics.

Written by Allie Nicodemo and Diane Boudreau, Knowledge Enterprise Development

image title
ASU professor first woman to win Shewhart award in her field of statistics.
Still "a long way to go" for women in STEM, says ASU professor Connie Borror.
January 26, 2016

ASU statistics professor — the first woman ever to win the Shewhart Medal — sees wide-ranging applications for statistics

What do golf balls and the staff of your local pharmacy have in common?

They can both benefit from data analysis.

In the case of golf balls, analyzing data related to product dimensions can result in a better ball, which means a better game on the green. In the case of a pharmacy staff, analyzing data related to things like the hiring process can result in better-equipped workers, which means more pleasant drugstore visits for customers.

The sheer range of fields in which statistical data analysis can be applied is one of the reasons Connie BorrorConnie Borror is a professor in the School of Mathematical and Natural Sciences, an academic unit of ASU’s New College of Interdisciplinary Arts and Sciences on the West campus. has stuck with it so long. Statisticians, said the Arizona State University statistics professor, “get to play in a lot of different playgrounds.”

Recently, Borror’s work — or “play,” as she thinks of it — in the field has been recognized by the American Society for Quality with the Walter Shewhart Medal for “outstanding leadership, teaching and research in the development and application of statistical techniques for engineering and industrial needs in the areas of response surface design, robust parameter design, measurement system and quality control.”

Although Borror is the 67th recipient of the award, she is the first woman ever to receive the distinction.

ASU statistics professor and students group photo

ASU statistics professor Connie Borror (far left) poses with Mike Reitel of PING and her statistics students.

Photo courtesy of Dave Hunt

Her interest in the field began as a graduate student when she received an “A” in a statistics class and decided to pursue it further. In 1998, she received her doctorate in industrial engineering from ASU. After she spent some time away from the Valley of the Sun, an opportunity at the West campus drew her back in 2005.

“They were developing a bachelor’s degree in statistics, and it was the only statistics degree available in the state at the time,” Borror said.

She applied to be an instructor in the program and is still teaching there today. One of her more notable courses is the senior statistics capstone class, in which students get the chance to apply their statistics knowledge in the real world. In fall 2014, one group of students worked with PING, a Phoenix-based golf equipment company, using statistical analysis to ensure its products met quality standards.

“The project gave us valuable experience in how to apply statistics in real life,” said then-student Tom Dameron.

Read on to learn more about the practical applications of statistical data analysis, as well as Borror’s thoughts on women in STEM today.

Question: What’s it like to be the first woman recipient of the Walter Shewhart Medal?

Answer: I’m honored. I think that there were probably many women who came before me who were deserving of it and for whatever reason it just didn’t happen at that time. So it’s an honor and it’s very humbling to be the first.

You don’t do these things alone. You have people supporting you along the way, and I’ve had some great opportunities at ASU that have let me do the things necessary to be considered for something like the Walter Shewhart Medal. I owe a lot to my college and to my colleagues.

Q: How do you feel about the current environment for women in STEM? Is it improving?

A: I’d like to think so, but at the high school and junior high level we’re still not seeing a large percentage of women participating in [STEM clubs or groups]. There was a robotics competition held last year in the Phoenix area, and of about 60 high school students participating, only four were women. So we still have a long way to go. But overall, it’s better than it has been.

When I was working on my PhD in industrial engineering, there was a handful of [women] who worked together and supported each other. It would be nice to see that happen more.

Q: Besides golf equipment, what are some other practical applications for statistics that people may not know about?

A: We’re doing another capstone class this semester, with three different projects. Two are at PING again but one is with Banner Health, where the students are looking at pharmacy staffing, how to best staff pharmacies. It’s a little bit out of the realm of what they’ve done before, but that’s what these projects are about, going into these industries and learning new things and applying statistics in those fields.

A lot of times people may not think statisticians would be working in the health-care area, but there’s a lot of room for data analysis there, especially with some of the new regulations coming up. We’ve also worked with other companies, including nonprofits and thrift stores, to help them arrange and structure their stores so that they function more efficiently. There are lots of things you wouldn’t think you’d be able to apply statistics to. There are companies that have to write grants, and statisticians can help them streamline the process of writing grants. So I’m hoping my students will have the opportunity to work with projects like that in the future, too.

Q: What do you like most about statistics?

A: I like the fact that you get to work in a lot of different problem areas. Manufacturing companies, government entities, hospitals. You get to play in a lot of different playgrounds; everybody else’s backyard. Statistics are needed to do analysis in a lot of different fields. That’s really attractive to me, that it has a lot of different applications.

The presentation of Borror’s medal will take place May 15 before the American Society for Quality’s annual business meeting in Milwaukee, Wisconsin.